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Abstract. A set of coherent states of the semi-direct product N(2) 0 Sp(4, R )  of the 
Heisenberg-Wyl and symplectic groups is constructed; they are shown to be non-spreading 
two-dimensional wavepackets moving on closed classical trajectories. These states 
generalise in a natural manner the Glauber coherent states to the description, in the classical 
limit, of a particle in a rotating frame as well as of a charged particle in a uniform magnetic 
field. The properties of these states are studied. 

1. Introduction 

Since its introduction by Schrodinger (1926) and its development and application in 
quantum optics by Glauber (1963), the oscillator or equivalently the Heisenberg-Wyl 
coherent states have found widespread application in the description of collective and 
cooperative phenomena in various fields of physics. Motivated by such developments, 
Radcliff (1971) and Block (1946) constructed a set of so-called spin coherent states and 
hoped that they would find applications in problems involving spins and their cor- 
relations. These states have subsequently been studied and used by a number of 
authors (see Perelomov (1977) and references therein). Moreover, they have been 
generalised to those of the group SU(1, 1) by Barut and Girardello (1971), Hongoh 
(1976) and Berghe and De Meyer (1978). Their generalisation to the rotation groups 
and the group of an asymmetric top has been given by Mikhailov (1973) and Janssen 
(1977) (see also Gulshani (1979a, b) and references therein). 

However, the construction of the coherent states of the rotation groups and those of 
an asymmetric top given by the author (Gulshani 1979a, b) is based on Schwinger’s 
boson realisation of the angular momentum algebra. This is an abstract realisation and 
is not physical, in the sense that the basic physical variables, the positions and 
momenta of the particles of the system, do enter into consideration. As a result, the 
coherent states thereby constructed are not directly related to the microscopic structure 
of the system they purport to describe. It is, therefore, highly desirable to obtain a set of 
angular momentum coherent states which are manifestly microscopic, meaning that 
they are explicitly dependent on the basic position observables. The importance of such 
a construction lies in the desire to understand from first principles and in a quantum 
setting the rotational motion of a self-bound system of particles, such as a nucleus (Bohr 
et al 1976). 

In this paper such a set of angular momentum coherent states in two dimensions and 
for a system of a single particle is constructed. This is a subset of the coherent states 
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associated with the semi-direct product group N(2) 0 Sp(4, R )  of the Heisenberg-Wyl 
and symplectic groups N(2) and Sp(4, R )  respectively. They are shown to generalise the 
Glauber coherent states (Glauber 1963) in a natural way. In Q 2 the harmonic oscillator 
dynamical group N(2) 0 Sp(4, R )  is reviewed. The associated angular momentum 
coherent states are constructed in 8 3 and their properties are studied in detail in 0 4. 
They are shown to be two-dimensional non-dispersive wavepackets with their centres 
moving on rather arbitrary closed classical trajectories in two dimensions. A special 
case of these angular momentum coherent states is shown to be those associated with 
the motion of a charged particle in a uniform magnetic field. This paper is, then, 
concluded in § 5 with a few suggested uses for these angular momentum coherent states, 
for example in the nuclear cranking model. In S 5 we also mention the possible 
generalisations of these angular momentum coherent states to those associated with the 
full group N(2) 0 Sp(4, R). These states describe both rotational and vibrational 
motions as well as their intercoupling. A further, perhaps more interesting, generalisa- 
tion is to three dimensions, where the appropriate group is naturally the semi-direct 
product group N(3) 0 Sp(6, R), the dynamical group of the three-dimensional 
oscillator. 

2. N(2) 0 Sp(4, R )  as oscillator dynamical group 

It is well known (Wybourne 1974, Major 1977a, b) that the semi-direct product group 
N(2) 0 Sp(4, R )  of the Heisenberg-Wyl N(2) and the symplectic Sp(4, R )  groups is a 
dynamical group of the harmonic oscillator in two dimensions. The Lie algebra of N(2) 
is spanned by the set { x k ,  Pk, I ;  k = 1,2} where x k ,  p k  are the position and momentum 
coordinates respectively and I is the identity. A more convenient basis is its complex 
extension { a k ,  a:, I }  where the usual oscillator bosons a k ,  a ;  satisfy the commutation 
relations [ a k ,  a : ]  = & I ,  [ a k ,  all = [a:, a : ]  = 0. The Lie algebra of sp(4, R) is realised by 
the set of all bilinear products formed from a k  and a: (Goshen and Lipkin 1959,1968, 
Lipkin 1966, Moshinsky and Quesne 1971, Wybourne 1974). Unitary realisations of 
the groups N(2) and Sp(4,R) are then obtained by exponentiating skew adjoint 
operators of the corresponding Lie algebras. Now the harmonic oscillator states are 
known to be irreducible under the action of the Heisenberg-Wyl group N(2). These 
states also span two unitary irreducible representations of the symplectic group, one 
involving only even and the other only odd parity states (Moshinsky and Quesne 1971, 
Quesne and Moshinsky 1971). The group N(2), of course, mixes these two irreducible 
representations. It then follows (Perelomov 1972,1977) that the coherent states of the 
group N(2) 0 Sp(4, R )  are given by the action of the group elements on a fixed 
two-dimensional harmonic oscillator state. 

For the representation space we choose the states of the harmonic oscillator with the 
Hamiltonian 

where, to encompass the anisotropic as well as the isotropic oscillator, the frequencies 
f f k  are taken to be independent of each other. The boson operators a k  and a: are then 
defined by 
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where m is the particle mass. As is well known the energy eigenvalues and eigenstates 
of Ho are respectively 

2 

k = l  
E n , n , = E n , + E n , = h  ak(nk+i) (2.2) 

and 

where 100) is the vacuum of a k ,  i.e. a k l O O )  = 0. 
The class of coherent states obtained from the action of the full group 

N(2) 0 Sp(4, R) on a fixed state in equation (2.3) is rather large, describing rotational as 
well as monopole and quadrupole vibrational modes of motion. In this paper, we 
consider only the subclass of these coherent states associated with the rotational degree 
of freedom. 

3. N(2) 0 Sp(4, R) angular momentum coherent states 

We begin with the generalised Glauber coherent states for the two-dimensional 
anisotropic oscillator system defined in equations (2.1)-(2.3). These states are defined 
by (Glauber 1963, Perelomov 1977) 

IA1, A z ;  nlnz>sD(Al)D(AZ)lnlnz) (3.1) 

D(Ak)=exp(A&: -A:Uk), k = 1,2 ,  (3.2) 

where the displacement operator D is an element of N(2), 

and Ak are two arbitrary complex amplitudes. Consider now the particular unitary 
element 

U(yj)=exp ( - -x1x2 i;l ) exp ( -- i ; P I P z )  

of the group Sp(4, R) ,  where y j  (k = 1 ,2 ,3 ,4 )  are arbitrary real parameters and where 
for convenience we have chosen to write U in terms of the position and the momentum 
coordinates x k  and P k  rather than the boson operators ak, U ; .  It is easy to check that the 
set { x l x z ,  p1p2, $ ( x l p l  +plxl) ,  i ( x 2 p 2  +p2x2)} is closed under commutation relations and 
hence spans a four-dimensional subalgebra of sp(4,R)i .  It is, therefore, a simple 
matter, by means of the method of parameter differentiation (Wilcox 1967), to find the 
law of composition for the elements of this subgroup of Sp(4, R ) .  

We now define the N(2) 0 Sp(4, R )  angular momentum coherent states in two 
dimensions by 

lA1, Az; yj, n l n d =  U(yj)lA1, A2; n d  = U(yj)D(A1)D(Az)lninz) (3.4) 
where lAl, A,;  n l n z )  are the generalised Glauber coherent states in equation (3.1). 

t In fact the subset { x l x z ,  PIP2, x l p l  + p 2 x 2 }  is isomorphic to the non-unitary complex extension of so(3)- 
so(2, l)--su(l ,  1). 
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Again using the methods of parameter differentiation (Wilcox 1967), one can easily 
combine the products of the unitary operators in (3.4) into a single element of the group 
N(2) 0 Sp(4, R).  However, it is seen that the coherent states in (3.4) are unitarily 
related to the Glauber coherent states and as such have the same orthogonality and 
completeness properties as the latter, namely 

(Ai, A,; Yj; nlnZIB1, Bz; Yj; n1nd 
2 " i  IBj -AjI21(;j) 

i = l  I s 0  I !  = n ~ X ~ - $ ( I A ~ / ~ + I B ~ / ~ - ~ A T B ~ )  * 

and 

4 d2Ai d2A21Ai, A2; 'yi; ninz)(Ai, A2; Yj; nlnzl3 1 
IT 

where d2Ak = d(Re Ak)  d(Im Ak) ,  ( k  = 1, 2). This resolution of unity follows immedi- 
ately from the fact (Perelomov 1977) that 

4 d2A1 d2A2jA1, A2;  nlnz)(A1, A,; nl ,  n2/= 1. 
I T  

The time evolution of the coherent states (3.4) will be studied with respect to the 
transformed Hamiltonian 

where Ho is defined in equation (2.1) and 

a': = UaLUt, a 'k  E UakUt. (3.6) 

Hlclc2)=E",",liiln'2) 

/elc2)= Uln1n2) (3.7) 

The Hamiltonian H satisfies the Schrodinger equation 

where 

and E,,,, and / n ln2 )  are defined in equations (2.2) and (2.3) respectively. The 
development in time of the N(2) 0 Sp(4, R )  angular momentum coherent states in (3.4) 
wrt the Hamiltonian H is then given by? 

/Ai(t) ,  A2(f); Y,; ninz) 

=exp[-(it/h)HlIAi, A2; Yj; nin2) 

= u ( y j )  exp[- (it/h)HoI~(Ai)D(A;?)lnlnz) 
= exp [ - (it/h)E,,,,I~(~j)D(Ai(f))D(Az(t))Ininz) 
= exp[ - (it/h)E,,,,]d(Ai(t))d(Az(t))/~i~z> (3.8) 

where in (3.8) we have used equations (3.5) and (3.2), the well-known identity 

t With respect to Ho in equation (2.1), these coherent states have complicated time development and will not 
have the simple rotational properties of the states in (3.8). 
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and the definitions (3.6) and 

(3.9) 

(3.10) 

4. Properties of N(2) 0 Sp(4, R) angular momentum coherent states 

In the previous section we discussed the orthogonality and the completeness of the 
coherent states in equations (3.8) or (3.4). The expansion of an arbitrary function, such 
as the state of good angular momentum, in terms of these states will not be considered in 
this paper. But we would like to consider now the expectation values and the variances 
in the states (3.8) of the various physically interesting observables. For this purpose one 
needs to know the action of the unitary operator U in (3.3) on x k  and pk. Clearly U 
induces a linear canonical transformation in the phase space which may be seen to be of 
scaling and gauge type. Using the expansion 

e"B e- '=B+[x,B]+(1/2!)[x,  [x ,BIl+ . . . , 
one easily finds 

.i(;)u=( - 7 1 7 4  y4 (1 -YlYZ) /Y3  y 2 / y 3  )(""* p1 

The inverse transformation is similarly determined. One obtains a better understand- 
ing of the transformation by various specialisation of the parameters yi. For instance, it 
is possible to choose y j  such that the transformed Hamiltonian H in (3.5) has the form 
f i0  + RJ3 where f i0  is some oscillator Hamiltonian, J3 x1pZ-xZp1, i.e. the third 
component of the angular momentum operator, and R is a real parameter. It is then 
seen that H o + R J 3  is the Hamiltonian Ho but observed in a frame rotating with the 
angular frequency \RI. 

Using equation (4.1) and the well known result (Glauber 1963) Dt(Ak)a:D(Ak) = 
U :  +A;, the expectation values, in the coherent states (3.8), of the position coordinates 
are readily found t o  be 

h i )= (Ai ( t ) ,  Az(t); Y j ;  nln2lxllAl(f), Az(f); yj; n1n2) 

where we have defined 

Ak(t)"lAkl eXp-i(akf +4k)  

with IAkl and $k being the modulus and the phase of Ak. Equations (4.2) are seen to be 
identical to those describing the motion of a classical particle which is a superposition of 
two elliptical orbits in the plane xl-x2. The orbits have frequencies a l  and a2,  the 
senses of rotations are clockwise and anticlockwise respectively and the axes of the 
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ellipses bear the ratios 1: ma1 y2 /  y:  and 1: y:/ma2y2. We are free to obtain either one 
of the orbits by setting either /A11 = 0 or [A21 = 0. 

The information on the extent of localisation and dispersiveness of the rotational 
coherent states in (3.8) is contained in the fluctuations in the values of the various 
physical observables. The variances of the position and the momentum operators in the 
coherent states (3.8) are found to be 

( A x 1 ) 2 ~ ( x : ) - ( x 1 ) 2 = 3 h [ ( l / m a 1 ) ( 2 n l +  1)y: +ma2(2n2+ l )y; /yi l ,  

(Axd2 = %[(l/ma2)(2n2+ 11~4’ + ma1(2n1+ l ) r ~ / r ~ I ,  

Equations (4.3) indicate that the coherent states (3.8) are non-dispersive and the 
uncertainty products (Axl)(Apl) and (Ax2)(Ap2) assume the minimum value of R/2 for 
the values n l  = n2 = 0, y1 = (1/p) tan ap, y2 = p cos a@ sin ap and y3 = y4 = cos ap 
with p = l /ma laz  and a arbitrary?. 

More interesting and important types of fluctuations pertinent to a rotating quan- 
tum system are, however, those associated with the angular momentum and the 
orientation of the system. The reason for this stems from the fact that such a system 
must be deformed like a molecule (Bohr et a1 1976). The state of such a system is, 
therefore, a superposition of states by definite angular momenta. To examine the 
coherent states (3.8) for these effects consider first the value of the classical angular 
momentum Jf) for the motion described in equation (4.2). One finds that 

(4.4) 
Equation (4.4) shows that ff) oscillates in time. When /A21 = 0, ]All # 0, (4.4) 

reduces to the constant value of the angular momentum of the clockwise orbit, and 
likewise when ]A11 = 0 and /A21 f 0. For the case of the isotropic Hamiltonian Ho in 
( l . l ) ,  a1 = a2, the third term in equation (4.4) vanishes and the fourth term reduces to a 
constant. 

Now the classical angular momentum f?) ought to be compared with the expec- 
tation value of the mechanical angular momentum operator JiQ’ in the coherent states 

t It is interesting to note that, although for these particular values of yi ( j  = 1,2, 3 ,4 )  the minimum 
uncertainty products are obtained in agreement with the result (Stoler 1970, Carnivell and Segler 1977) that 
states unitarily related to the minimum packet are minimum packets, this result does not seem to have validity 
in dimensions higher than one. 
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(3.8), rather than with that of the canonical angular momentum J$' = xlp2 -xZpl (as 
distinguished by the overhead bars). This is because the coherent states (3.8) are 
translated in time via the Hamiltonian H in equation (3.5) and not Ho. From equation 
(3.8) and the definition of 7:" in (4.4) one easily deduces the definition 

dx2 dxl mi 
dt dt  h 

7:") =mx~--mx2-=--(x~[H, x ~ ] - x ~ [ H ,  XI]). (4.5) 

The expectation value of 7;") in the coherent states (3.8) is, then, evaluated to be 

(Ti") ) = j f '  + 2m y2(En2 - Enl)  (4.6) 

where En2 and Enl are defined in equation (2.2). Obviously, for a given a1 and a2 the 
difference between (J$")) and rf' is minimum in absolute value when nl = n2 and 
vanishes when E,, = En2. It is also observed that the second quantity on the RHS of 
equation (4.6) is the value of (Ti"') when the semi-classical nature of the coherent states 
in (3.8) disappears, i.e. when /All = /A2/ = 0. Thus (Ji"') in equation (4.6) is the sum of 
the classical and the quantum angular momenta! This result may be understood from 
the last expression in equation (3.8) and the fact that the operator U, acting on the state 
Inln2) which has zero mean angular momentum, generates the state ln'ln"2) with 
non-zero mean angular momentum (cf equations (3.7) and (4.6)). 

A measure of sharpness of the angular momentum of the coherent states (3.8) about 
(j;"') is given by the variance AT3. Using the expression 

Y3Y4 

m2a: y : )2  -q y3y4-- m2a:y:)( Yay4-=) +4a,( y3y4- -  
h2az 2 2 2  

Y3Y4 Y3Y4 

x[(2nl+1)(2n2+1)+4(2n2+ 1) R e 2 A l + 4 ( 2 n l + 1 )  Im2Az 

+-( h2a 1 Y3Y4--) mcu;y: 
4a2 Y3Y4 

x[(2nl+1)(2n2+1)+4(2n2+ 1) Im2Al+4(2n l+1)  Re2Azl 
2 2 2  1 / 2  

Y3Y4 a1 

- ( y3  y4 - =)( 2) '" Re A 2  Im Al l .  

+ 8 h ~ ~ y ~ ( E , , - E , , ) [ ( y 3 y 4 - ~ ) ( ~ )  m a l y z  R e A l  I m A 2  

2 2 2  

(4.7) 

It is seen in (4.7) that (AT3)' oscillates in time with frequencies a1 when IAz/ = O , l A l /  # 0 
and with a2 when /Al/  = 0, lA2/ # 0. For an isotropic oscillator (a1 = a2)  (AJ3)' is, 
however, stationary. The expression (4.7) is, however, too complicated to make any 
more useful observations. It does, nevertheless, demonstrate the non-dispersive nature 
of the angular momentum coherent states (3.8) in the sense that (A.73)' is oscillatory. 



3202 P Gulshani and A B Volkov 

In contrast to the well defined observables dealt with so far there is, on the other 
hand, no unique and/or well defined operator associated with the orientation of a state 
in quantum mechanics. Among the numerous classical angle variables conjugate to J:"' 
that one may define (Lipkin and Goldstein 1958a, b, Verhaar 1962) even the simplest, 
namely tan-'(x2/xl), is difficult to deal with. There is an additional complication here 
because we have to deal with 7:"' rather than J;"'. One may, however, dispense with 
the notion of angle and instead examine a certain multipole distribution of the states in 
equation (3.8). One may, for instance, look at the quadrupole moment x1x2. For this 
quantity one finds that (x1x2) = (x1)(x2) and (x:xi)-(x1x2)2 assumes its smallest value 
for n1 = n2 = 0. A more satisfying alternative is, however, to look at the time develop- 
ment of the probability density itself in the coordinate space. We now derive expres- 
sions for the coherent states (3.8) and the corresponding probability density in the 
coordinate space for the special case when i11= n2 = 0. 

When nl = n2 = 0, the coherent states in equation (3.8) become simultaneous 
eigenstates of the commuting annihilation operators iz and i2 defined in (3.6) because 
fit(Ak)6kfi(Ak)=ik +Ak and i k l d d ) z o  (Cf equations (3.8), (3.7) and (2.3)). We 
therefore have 

zklAl(t), A z ( ~ ) ;  Y j ;  OO)=Ak(t)IAl(t), A z ( ~ ) ;  Yj;OO> 

where, using the inverse of the transformation in equation (4.1), 

(4.8) 

The two first-order linear partial differential equations in (4.8) can easily be solved, for 
example by the method of characteristics (Hildebrand 1962). For the normalised 
solution of (4.8) one then obtains 

r~ IAl(t), A2(t); y j ;  00) 

where (XI) and (XZ) are the position coordinates for the classical orbits given in 
equations (4.2) and (pl) and ( p 2 )  are the corresponding canonical momenta, i.e. the 
expectation values of p1 and p2 in states (3.8). The parameters in equation (4.10) are 
defined by 

mazy; 
fitm2alazy; + ~ 3 ~ 4 )  

2 2 ,  maid p z  2 2 ,  a =  
h(m2a1azd  + ~ 3 ~ 4 )  

A Y Z  m2ala2y2(1 - y1y2)- ~ 1 ~ 3 ~ 4  

ma 1 m ~ I ~ Z Y Z  - y3y4 2 2 2 2  y=- 

The corresponding probability density is 

l r ~ I ' =  ( a p / r r 2 P 4  exp[-a(xl - ( X ~ ) ) ~ - P P X ~ - ( X ~ ) ) ~ I .  (4.11) 
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The equi-probability contours are, therefore, given by the ellipses 

Z ? / a 2 +  Z : / b 2  = 1 (4.12) 

where 21 3 x 1  - ( x l )  and 2 2 "  x2-(x2) ,  a2 = c /a ,  and b2= c / p  and c is some real 
number. 

From equations (4.12) and (4.2) it follows that when ( x l )  = (xz) = 0, i.e. for ]All = 
/A*/ = 0, the equi-probability contours are ellipses with their centres at the origin. Thus, 
in general, (4.12) is the equation for elliptical equi-probability contours with their 
centres moving on the classical orbits given in equation (4.2). Recalling the analysis of 
the motion of a charged particle in a constant uniform magnetic field (Landau and 
Lifshitz 1965, Johnson and Lippman 1949, Dulock and McIntosh 1966), it is clear that 
the coherent states (4.10) and (3.8) can be specialised to those for this system. In fact, 
these latter coherent states have already been obtained (Malkin and Man'Ko 1969, 
Feldman and Kahn 1970, Dodonov et al 1972). 

5. Concluding remarks 

An immediate application of the coherent states in equations (3.4) and (3.8) is in 
establishing the classical correspondence for the nuclear cranking model (Inglis 1954, 
Thouless and Valatin 1962, Gulshani and Rowe 1978a, b). This model has played an 
important role in the description of the rotational properties of certain nuclei at low as 
well as at high angular momenta (Bohr etal  1976, Johnson and Szymanski 1973). It is 
surmised that the coherent states (3.4) and (3.8) may be particularly useful in the 
description of nuclear high-spin states where the rotational motion may be treated 
quasiclassically. The coherent states (3.4) and (3.8) may also be of interest to the 
rotational motion of cluster-type systems, such as molecules and nuclear molecular 
systems reached in heavy-ion collisions (Greiner 1972). 

For such an application it is necessary, however, to construct a multi-fermion 
angular momentum coherent state from that for a single particle given in equations (3.4) 
and (3.8). For a system of N identical non-interacting fermions moving in a common 
harmonic oscillator potential, such a construction is achieved in an obvious way as 
follows: introducing the label v ( l , 2 , .  . . , N )  for the particles, one replaces x k ,  P k ,  a k  

and a: in the previous sections by x , k ,  P u k ,  avk and a t k  respectively, and sum over the 
particle index v wherever these operators appear in the expresssions (3.4) and (3.8). Of 
course, one also replaces the single-particle oscillator state lnl, n2) in these expressions 
by an antisymmetrised product wavefunction (the Slater determinant) obtained from 
the occupied single-particle states In lun2v). That is, one simply makes the substitution 

4 

where ln1,n2,) is the vth occupied single-particle two-dimensional oscillator state and 
C p  (-1)'P is the well known antisymmetrising operator. It is then a straightforward 
matter to derive the results of the previous sections, using instead this multi-particle 
generalisation of the coherent states (3.4) and (3.8). 

It is also of interest to construct the most general N(2) 0 Sp(4, R )  coherent states 
that will describe rotational and vibrational motions as well as their intercoupling. 
Equally interesting is the generalisation of the two-dimensional angular momentum 
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coherent states (3.4) and (3.8) to the three-dimensional case. Obviously the appro- 
priate group in this case is the semi-direct product group N(3) 0 Sp(6, R) ,  the dynami- 
cal group of the three-dimensional oscillator. In a following paper we shall address 
ourselves to these questions. 
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